MAKERERE UNIVERSITY

COLLEGE OF COMPUTING AND INFORMATION SCIENCES SCHOOL OF COMPUTING & INFORMATICS TECHNOLOGY END OF SEMESTER II EXAMINATION 2021/2022

PROGRAMME: BCSC (YR I) and BSSE (YR 2)

YEAR OF STUDY: 1& II

COURSE NAME: CALCULUS I

COURSE CODE: MTH 1203

DATE: 02nd September 2022

TIME: 4:00-7:00PM

EXAMINATION INSTRUCTIONS

- I. ATTEMPT ALL QUESTIONS IN SECTION A (40 MARKS)
- 2. ATTEMPT THREE (03) QUESTIONS IN SECTION B (60 MARKS)
- 3. DO NOT OPEN THIS EXAM UNTIL YOU ARE TOLD TO DO SO
- 4. ALL ROUGH WORK SHOULD BE IN YOUR ANSWER BOOKLET
- 5. SHOW ALL THE NECESSARY WORKINGS

SECTION A: (40 marks)

a. Find $\lim_{x \to \infty} \frac{x^4 - 2x^2 + 3x - 4}{4x^4 - 4}$

(4 marks)

- b. A spring has a natural length of 18 inches and a force of 20 lbs. is required to stretch and hold the spring to a length of 24 inches. What is the work required to stretch the spring from a length of 21 inches to a length of 26 inches? (5 marks)
- c. Consider the function $h(x) = \frac{e^x + e^{-x}}{2}$ for $-\infty < x < \infty$. Find the interval(s) on which h(x) is increasing. (5 marks)
- d. Find the equation of the tangent line to the curve of $x^2 + (y-3)^3 = 9$ at x = 1. (5marks)
- e. Evaluate the following Integrals.
 - i. $\int_0^{\pi} (x + \sin(x)) dx$

(3 marks)

ii. $\int_0^2 \sqrt{4 - x^2} dx$

(4 marks)

f. State the three conditions that should be met for a function to be continuous.

(3 marks)

g. Determine if the following function is continuous or discontinuous at x = -6.

(4 marks)

$$g(x) = \begin{cases} 1 - 3x & x < -6 \\ 7 & x = -6 \\ x^3 & -6 < x < 1 \\ 1 & x = 1 \\ 2 - x & x > 1 \end{cases}$$

- h. Given $f(t) = t^2 + 3$, find
 - i. $f^{-1}(t)$.

(3 marks)

ii. The domain and range of $f^{-1}(t)$.

(4 marks)

ECTION B: (60 MARKS)

QUESTION 1:

a. Suppose that $s(t) = 4t\sqrt{t + \sqrt{t}}$ is the position function of a particle, where s is in meters and t is in seconds. Find the particle's instantaneous velocity at time t = 4s.

(6 marks)

- b. The position of an object at any time is given by $s(t) = 3t^4 40t^3 + 126t^2 9$. Determine all the points where the object is not moving. (7 marks)
- c. Given the following functions, find $\frac{dy}{dx}$.

i.
$$y = (x^2 - x)^{\cos 2x}$$

(3 marks)

ii.
$$\sin y + x^2 y^3 - \cos x = 2y$$

(4 marks)

QUESTION 2:

a. Evaluate the following limits.

i.
$$\lim_{x \to 5} \frac{(\sqrt{x^2 - 9}) - 4}{x^2 - 6x + 5}$$

(5 marks)

ii.
$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos(2x)}$$

(5 marks)

b. Determine constants a, b, c, d so that the function below is continuous at x = -1 and differentiable at x = 1. (10 marks)

$$g(x) = \begin{cases} \frac{x^2 + ax + 7}{\dot{x}^2 + 4x + 3} & \text{if } x < -1\\ b & \text{if } 1 \le x \le 1\\ e^{c(x-1)} + dx & \text{if } 1 < x \end{cases}$$

QUESTION 3:

- a. Find the absolute maximum and the absolute minimum values of $f(x)=(x^2-3)e^x$ on the interval [-2,2]. (6 marks)
- b. Determine $\frac{dy}{dx}$ in terms of x and y for the equation $x + xy^2 y = 3$.

(5 marks)

- c. Identify all the intervals where the function $f(x) = x^3 6x^2 + 5x + 1$ is concave down and find the inflection point(s), if any. (5 marks)
- d. Differentiate the function $y = 6 + 4\sqrt{x}\csc(x)$ with respect to x.

(4 marks)

QUESTION 4:

- a. By sketching the curves, determine the area of the region bounded by the equation $y = x^2 4x$ and y = 6 3x. (7 marks)
- b. Determine the value of $\int_2^9 f(x) dx$ given that $\int_5^2 f(x) dx = 3$ and $\int_5^9 f(x) dx = 8$.

(3 marks)

- c. Find the average value of $f(x) = 4x^2 x + 5$ on [-2,3] and determine the value(s) of c that satisfies the Mean Value Theorem for Integrals of f(x) in the interval [-2,3]. (7 marks)
- d. Find the following integral.

(3 marks)

$$\int x \sin(x^2) \cos(x^2) \, dx$$

QUESTION 5:

- a. Solve for $2\cos^2 x \sqrt{3}\cos x = 0$ on $0 \le x \le 2\pi$ (6 marks)
- b. Find all the solutions to the following equations. If there are no solutions, clearly explain why.

i.
$$\log w + \log(w - 21) = 2$$

(3 marks)

ii.
$$4x + 1 = (12x + 3)e^{x^2 - 2}$$

(4 marks)

c. Determine h(t) given that $h''(t) = 24t^2 - 48t + 2$, h(1) = -9 and h(-2) = -4. (7 marks)

"END"